已知现代深度神经网络模型将错误地将分布式(OOD)测试数据分类为具有很高信心的分数(ID)培训课程之一。这可能会对关键安全应用产生灾难性的后果。一种流行的缓解策略是训练单独的分类器,该分类器可以在测试时间检测此类OOD样本。在大多数实际设置中,在火车时间尚不清楚OOD的示例,因此,一个关键问题是:如何使用合成OOD样品来增加ID数据以训练这样的OOD检测器?在本文中,我们为称为CNC的OOD数据增强提出了一种新颖的复合腐败技术。 CNC的主要优点之一是,除了培训集外,它不需要任何固定数据。此外,与当前的最新技术(SOTA)技术不同,CNC不需要在测试时间进行反向传播或结合,从而使我们的方法在推断时更快。我们与过去4年中主要会议的20种方法进行了广泛的比较,表明,在OOD检测准确性和推理时间方面,使用基于CNC的数据增强训练的模型都胜过SOTA。我们包括详细的事后分析,以研究我们方法成功的原因,并确定CNC样本的较高相对熵和多样性是可能的原因。我们还通过对二维数据集进行零件分解分析提供理论见解,以揭示(视觉和定量),我们的方法导致ID类别周围的边界更紧密,从而更好地检测了OOD样品。源代码链接:https://github.com/cnc-ood
translated by 谷歌翻译
Quadruped robots are currently used in industrial robotics as mechanical aid to automate several routine tasks. However, presently, the usage of such a robot in a domestic setting is still very much a part of the research. This paper discusses the understanding and virtual simulation of such a robot capable of detecting and understanding human emotions, generating its gait, and responding via sounds and expression on a screen. To this end, we use a combination of reinforcement learning and software engineering concepts to simulate a quadruped robot that can understand emotions, navigate through various terrains and detect sound sources, and respond to emotions using audio-visual feedback. This paper aims to establish the framework of simulating a quadruped robot that is emotionally intelligent and can primarily respond to audio-visual stimuli using motor or audio response. The emotion detection from the speech was not as performant as ERANNs or Zeta Policy learning, still managing an accuracy of 63.5%. The video emotion detection system produced results that are almost at par with the state of the art, with an accuracy of 99.66%. Due to its "on-policy" learning process, the PPO algorithm was extremely rapid to learn, allowing the simulated dog to demonstrate a remarkably seamless gait across the different cadences and variations. This enabled the quadruped robot to respond to generated stimuli, allowing us to conclude that it functions as predicted and satisfies the aim of this work.
translated by 谷歌翻译
Reliable and cost-effective counting of people in large indoor spaces is a significant challenge with many applications. An emerging approach is to deploy multiple fisheye cameras mounted overhead to monitor the whole space. However, due to the overlapping fields of view, person re-identificaiton (PRID) is critical for the accuracy of counting. While PRID has been thoroughly researched for traditional rectilinear cameras, few methods have been proposed for fisheye cameras and their performance is comparatively lower. To close this performance gap, we propose a multi-feature framework for fisheye PRID where we combine deep-learning, color-based and location-based features by means of novel feature fusion. We evaluate the performance of our framework for various feature combinations on FRIDA, a public fisheye PRID dataset. The results demonstrate that our multi-feature approach outperforms recent appearance-based deep-learning methods by almost 18% points and location-based methods by almost 3% points in accuracy.
translated by 谷歌翻译
We propose reconstruction probing, a new analysis method for contextualized representations based on reconstruction probabilities in masked language models (MLMs). This method relies on comparing the reconstruction probabilities of tokens in a given sequence when conditioned on the representation of a single token that has been fully contextualized and when conditioned on only the decontextualized lexical prior of the model. This comparison can be understood as quantifying the contribution of contextualization towards reconstruction -- the difference in the reconstruction probabilities can only be attributed to the representational change of the single token induced by contextualization. We apply this analysis to three MLMs and find that contextualization boosts reconstructability of tokens that are close to the token being reconstructed in terms of linear and syntactic distance. Furthermore, we extend our analysis to finer-grained decomposition of contextualized representations, and we find that these boosts are largely attributable to static and positional embeddings at the input layer.
translated by 谷歌翻译
With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.
translated by 谷歌翻译
Indian e-commerce industry has evolved over the last decade and is expected to grow over the next few years. The focus has now shifted to turnaround time (TAT) due to the emergence of many third-party logistics providers and higher customer expectations. The key consideration for delivery providers is to balance their overall operating costs while meeting the promised TAT to their customers. E-commerce delivery partners operate through a network of facilities whose strategic locations help to run the operations efficiently. In this work, we identify the locations of hubs throughout the country and their corresponding mapping with the distribution centers. The objective is to minimize the total network costs with TAT adherence. We use Genetic Algorithm and leverage business constraints to reduce the solution search space and hence the solution time. The results indicate an improvement of 9.73% in TAT compliance compared with the current scenario.
translated by 谷歌翻译
Explainable Artificial Intelligence (AI) in the form of an interpretable and semiautomatic approach to stage grading ocular pathologies such as Diabetic retinopathy, Hypertensive retinopathy, and other retinopathies on the backdrop of major systemic diseases. The experimental study aims to evaluate an explainable staged grading process without using deep Convolutional Neural Networks (CNNs) directly. Many current CNN-based deep neural networks used for diagnosing retinal disorders might have appreciable performance but fail to pinpoint the basis driving their decisions. To improve these decisions' transparency, we have proposed a clinician-in-the-loop assisted intelligent workflow that performs a retinal vascular assessment on the fundus images to derive quantifiable and descriptive parameters. The retinal vessel parameters meta-data serve as hyper-parameters for better interpretation and explainability of decisions. The semiautomatic methodology aims to have a federated approach to AI in healthcare applications with more inputs and interpretations from clinicians. The baseline process involved in the machine learning pipeline through image processing techniques for optic disc detection, vessel segmentation, and arteriole/venule identification.
translated by 谷歌翻译
Objective: We aim to develop an open-source natural language processing (NLP) package, SODA (i.e., SOcial DeterminAnts), with pre-trained transformer models to extract social determinants of health (SDoH) for cancer patients, examine the generalizability of SODA to a new disease domain (i.e., opioid use), and evaluate the extraction rate of SDoH using cancer populations. Methods: We identified SDoH categories and attributes and developed an SDoH corpus using clinical notes from a general cancer cohort. We compared four transformer-based NLP models to extract SDoH, examined the generalizability of NLP models to a cohort of patients prescribed with opioids, and explored customization strategies to improve performance. We applied the best NLP model to extract 19 categories of SDoH from the breast (n=7,971), lung (n=11,804), and colorectal cancer (n=6,240) cohorts. Results and Conclusion: We developed a corpus of 629 cancer patients notes with annotations of 13,193 SDoH concepts/attributes from 19 categories of SDoH. The Bidirectional Encoder Representations from Transformers (BERT) model achieved the best strict/lenient F1 scores of 0.9216 and 0.9441 for SDoH concept extraction, 0.9617 and 0.9626 for linking attributes to SDoH concepts. Fine-tuning the NLP models using new annotations from opioid use patients improved the strict/lenient F1 scores from 0.8172/0.8502 to 0.8312/0.8679. The extraction rates among 19 categories of SDoH varied greatly, where 10 SDoH could be extracted from >70% of cancer patients, but 9 SDoH had a low extraction rate (<70% of cancer patients). The SODA package with pre-trained transformer models is publicly available at https://github.com/uf-hobiinformatics-lab/SDoH_SODA.
translated by 谷歌翻译
To apply federated learning to drug discovery we developed a novel platform in the context of European Innovative Medicines Initiative (IMI) project MELLODDY (grant n{\deg}831472), which was comprised of 10 pharmaceutical companies, academic research labs, large industrial companies and startups. The MELLODDY platform was the first industry-scale platform to enable the creation of a global federated model for drug discovery without sharing the confidential data sets of the individual partners. The federated model was trained on the platform by aggregating the gradients of all contributing partners in a cryptographic, secure way following each training iteration. The platform was deployed on an Amazon Web Services (AWS) multi-account architecture running Kubernetes clusters in private subnets. Organisationally, the roles of the different partners were codified as different rights and permissions on the platform and administrated in a decentralized way. The MELLODDY platform generated new scientific discoveries which are described in a companion paper.
translated by 谷歌翻译
This work proposes Multi-task Meta Learning (MTML), integrating two learning paradigms Multi-Task Learning (MTL) and meta learning, to bring together the best of both worlds. In particular, it focuses simultaneous learning of multiple tasks, an element of MTL and promptly adapting to new tasks with fewer data, a quality of meta learning. It is important to highlight that we focus on heterogeneous tasks, which are of distinct kind, in contrast to typically considered homogeneous tasks (e.g., if all tasks are classification or if all tasks are regression tasks). The fundamental idea is to train a multi-task model, such that when an unseen task is introduced, it can learn in fewer steps whilst offering a performance at least as good as conventional single task learning on the new task or inclusion within the MTL. By conducting various experiments, we demonstrate this paradigm on two datasets and four tasks: NYU-v2 and the taskonomy dataset for which we perform semantic segmentation, depth estimation, surface normal estimation, and edge detection. MTML achieves state-of-the-art results for most of the tasks. Although semantic segmentation suffers quantitatively, our MTML method learns to identify segmentation classes absent in the pseudo labelled ground truth of the taskonomy dataset.
translated by 谷歌翻译